MATH 2010F Advanced Calculus I, 2016-17
 Solution of Test 2

Q1. Study the following limit. If the limit exist, find the value of the limit. If not, justify your answer with a reason.
(a) (7 points)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}},
$$

(b) (8 points)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{3}+y^{3}\right)}{x^{2}+y^{2}} .
$$

Solution.

(a) Take $x_{n}=\frac{1}{n}$. Then along the sequence $\left(x_{n}, 0\right) \rightarrow(0,0)$ as $n \rightarrow \infty$, we have

$$
\lim _{\left(x_{n}, 0\right) \rightarrow(0,0)} \frac{x_{n} \cdot 0}{x_{n}^{2}+0^{2}}=0
$$

On the other hand,

$$
\lim _{\left(x_{n}, x_{n}\right) \rightarrow(0,0)} \frac{x_{n}^{2}}{x_{n}^{2}+x_{n}^{2}}=\frac{1}{2}
$$

There are two sequences converging to $(0,0)$, so the limit does not exist.
(b) Observe that

$$
0 \leq \frac{\left|x^{3}+y^{3}\right|}{x^{2}+y^{2}} \leq \frac{(|x|+|y|)\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=|x|+|y|
$$

By using Sandwich rule, we obtain that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=0
$$

Consequently,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{3}+y^{3}\right)}{x^{2}+y^{2}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} \frac{\sin \left(x^{3}+y^{3}\right)}{x^{3}+y^{3}} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} \lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{3}+y^{3}\right)}{x^{3}+y^{3}} \\
& =0 \cdot 1=0
\end{aligned}
$$

Q2. Let $f(x, y)=y+\frac{x}{y}$.
(a) (8 points) Find all the second order partial derivatives in the domain of definition.
(b) (7 points) Is f a C^{2} function in the domain? Justify your answer with a reason.

Solution.

(a) For $y \neq 0$,

$$
\begin{aligned}
f_{x} & =\frac{1}{y}, \quad f_{y}=1-\frac{x}{y^{2}} \\
f_{y x} & =f_{x y}=-\frac{1}{y^{2}} \\
f_{x x} & =0, \quad f_{y y}=\frac{2 x}{y^{3}}
\end{aligned}
$$

(b) Since $f_{x x}, f_{x y}$ and $f_{y y}$ are continuous at $y \neq 0$, then f is C^{2}.

Q3. Let $f(x, y)=\left(x^{\frac{1}{3}}+y^{\frac{1}{3}}\right)^{3}$.
(a) (10 points) Find $f_{x}(x, y), f_{x}(x, y)$ for $(x, y) \neq(0,0)$, and find $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) (10 points) Is f differentiable at $(0,0)$? Justify your answer with a reason.

Solution.

(a) Observe that for $(x, y) \neq(0,0)$,

$$
\begin{aligned}
& f_{x}(x, y)=3\left(x^{1 / 3}+y^{1 / 3}\right)^{2} \cdot \frac{1}{3} x^{-2 / 3}=\left(x^{1 / 3}+y^{1 / 3}\right)^{2} x^{-2 / 3} \\
& f_{y}(x, y)=3\left(x^{1 / 3}+y^{1 / 3}\right)^{2} \cdot \frac{1}{3} y^{-2 / 3}=\left(x^{1 / 3}+y^{1 / 3}\right)^{2} y^{-2 / 3}
\end{aligned}
$$

By definition,

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x-0}=1 \\
f_{y}(0,0) & =\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y-0}=1
\end{aligned}
$$

(b) If f is differentiable at $(0,0)$ then

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-(x+y)|}{\sqrt{x^{2}+y^{2}}}=0 \tag{1}
\end{equation*}
$$

However (1) does not hold which implies f is not differentiable. Indeed,

$$
\lim _{(x, x) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-(x+y)|}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, x) \rightarrow(0,0)} \frac{|8 x-2 x|}{\sqrt{2 x^{2}}}=\frac{6}{\sqrt{2}} \neq 0
$$

Q. 4 (15 points) Consider the function

$$
f(x, y)=\left\{\begin{array}{cc}
\left(x^{3}+y^{4}\right) \cos \left(\frac{1}{x^{2}+y^{2}}\right), & \text { for }(x, y) \neq(0,0) \\
0, & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

Show that it is differentiable at $(0,0)$ but its partial derivatives are not continuous there.

Solution. Observe that

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{3} \cos \left(\frac{1}{x^{2}}\right)}{x}=0 \\
f_{y}(0,0) & =\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y-0} \\
& =\lim _{y \rightarrow 0} \frac{y^{4} \cos \left(\frac{1}{y^{2}}\right)}{y}=0
\end{aligned}
$$

Then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-0|}{\sqrt{x^{2}+y^{2}}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{\left|\left(x^{3}+y^{4}\right) \cos \left(\frac{1}{x^{2}+y^{2}}\right)\right|}{\sqrt{x^{2}+y^{2}}} \\
& =0
\end{aligned}
$$

since

$$
0 \leq \frac{\left|x^{3}+y^{4}\right|\left|\cos \left(\frac{1}{x^{2}+y^{2}}\right)\right|}{\sqrt{x^{2}+y^{2}}} \leq \frac{\left(x^{2}+|y|^{3}\right)\left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}=x^{2}+|y|^{3} \rightarrow 0
$$

Thus, f is differentiable at $(0,0)$.
However, if $(x, y) \neq(0,0)$ then

$$
f_{x}(x, y)=3 x^{2} \cos \left(\frac{1}{x^{2}+y^{2}}\right)+\frac{2 x\left(x^{3}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} \sin \left(\frac{1}{x^{2}+y^{2}}\right)
$$

When $(x, 0) \rightarrow(0,0)$,

$$
f_{x}(x, 0)=3 x^{2} \cos \left(\frac{1}{x^{2}}\right)+2 \sin \left(\frac{1}{x^{2}}\right) \nrightarrow 0
$$

Therefore, f_{x} is not continuous at $(0,0)$.
On the other hand, for $(x, y) \neq(0,0)$,

$$
f_{y}(x, y)=4 y^{3} \cos \left(\frac{1}{x^{2}+y^{2}}\right)+\frac{2 y\left(x^{3}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} \sin \left(\frac{1}{x^{2}+y^{2}}\right)
$$

When $\left(x, x^{1 / 2}\right) \rightarrow(0,0)$ for $x>0$,

$$
f_{y}\left(x, x^{1 / 2}\right)=4 x^{3 / 2} \cos \left(\frac{1}{x^{2}+x}\right)+\frac{2\left(x^{7 / 2}+x^{5 / 2}\right)}{\left(x^{2}+x\right)^{2}} \sin \left(\frac{1}{x^{2}+x}\right) \nrightarrow 0
$$

Thus, f_{y} is also not continuous at $(0,0)$.
Q5. Consider the funtion $g(x, y, z)=z^{3}-x y+y z+y^{3}-2$.
(a) (5 points) Find its directional derivative along $\xi=(1,2,1) / \sqrt{6}$ at point $P(3,4,7)$,
(b) (5 points) Find the direction it increases most rapidly at P,
(c) (5 points) Find the direction it decreases most rapidly at P.

Solution.

(a) Observe that

$$
\nabla g(x, y, z)=\left(-y,-x+z+3 y^{2}, 3 z^{2}+y\right)
$$

Then the directional derivative along $\xi=(1,2,1) / \sqrt{6}$ at point $P(3,4,7)$ is

$$
\xi \cdot \nabla g(P)=(1,2,1) / \sqrt{6} \cdot(-4,52,151)=\frac{251}{\sqrt{6}}
$$

(b) The gradient direction is what we want. Indeed,

$$
\frac{\nabla g(P)}{|\nabla g(P)|}=\frac{(-4,52,151)}{\sqrt{25521}}
$$

(c) g decreases most rapidly at P along its negative gradient direction, i.e.,

$$
-\frac{\nabla g(P)}{|\nabla g(P)|}=-\frac{(-4,52,151)}{\sqrt{25521}}
$$

Q6. Consider the two dimensional heat equation

$$
\partial_{t} H-\Delta H=0, \text { with } \Delta=\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}, \quad(x, y) \in \mathbb{R}^{2} .
$$

(a) (10 points) Suppose $H(t, x, y)=\frac{1}{t} h(z)$ with $z=\sqrt{\frac{x^{2}+y^{2}}{t}}$, show $h(z)$ satisfies the ordinary differential equation

$$
h^{\prime \prime}(z)+\left(\frac{1}{z}+\frac{1}{2} z\right) h^{\prime}(z)+h(z)=0
$$

(b) (10 points) Can you find all these solution for $h(z)$?

Solution.

(a) By using Chain Rule,

$$
\begin{aligned}
& \left(\frac{1}{t} h(z)\right)_{x}=\frac{1}{t} h^{\prime}(z) \frac{x}{\sqrt{t} \sqrt{x^{2}+y^{2}}} \\
& \left(\frac{1}{t} h(z)\right)_{x x}=\frac{1}{t^{3 / 2}}\left(h^{\prime \prime}(z) \frac{1}{\sqrt{t}}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+h^{\prime}(z) \frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right) \\
& \left(\frac{1}{t} h(z)\right)_{y y}=\frac{1}{t^{3 / 2}}\left(h^{\prime \prime}(z) \frac{1}{\sqrt{t}}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}+h^{\prime}(z) \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Delta\left(\frac{1}{t} h(z)\right) & =\frac{1}{t^{3 / 2}}\left(\frac{1}{\sqrt{t}} h^{\prime \prime}(z)+h^{\prime}(z) \frac{1}{\sqrt{x^{2}+y^{2}}}\right) \\
& =\frac{1}{t^{2}}\left(h^{\prime \prime}(z)+\frac{1}{z} h^{\prime}(z)\right)
\end{aligned}
$$

And observe that

$$
\begin{aligned}
\left(\frac{1}{t} h(z)\right)_{t} & =-\frac{1}{t^{2}} h(z)+\frac{1}{t} h^{\prime}(z)\left(-\frac{1}{2} t^{-3 / 2} \sqrt{x^{2}+y^{2}}\right) \\
& =-\frac{1}{t^{2}} h(z)-\frac{1}{2 t^{5 / 2}} \sqrt{x^{2}+y^{2}} h^{\prime}(z) \\
& =-\frac{1}{t^{2}} h(z)-\frac{1}{2 t^{5 / 2}} \sqrt{x^{2}+y^{2}} h^{\prime}(z) \\
& =\frac{1}{t^{2}}\left(-h(z)-\frac{1}{2} z h^{\prime}(z)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0=\partial_{t} H-\Delta H & =\left(\frac{1}{t} h(z)\right)_{t}-\Delta\left(\frac{1}{t} h(z)\right) \\
& =\frac{1}{t^{2}}\left(-h(z)-\frac{1}{2} z h^{\prime}(z)\right)-\frac{1}{t^{2}}\left(h^{\prime \prime}(z)+\frac{1}{z} h^{\prime}(z)\right)
\end{aligned}
$$

which implies

$$
0=h(z)+\frac{1}{2} z h^{\prime}(z)+h^{\prime \prime}(z)+\frac{1}{z} h^{\prime}(z)
$$

(b) Observe that

$$
\begin{aligned}
0 & =h^{\prime \prime}(z)+\left(\frac{1}{z}+\frac{1}{2} z\right) h^{\prime}(z)+h(z) \\
\Rightarrow \quad 0 & =z h^{\prime \prime}(z)+\left(1+\frac{1}{2} z^{2}\right) h^{\prime}(z)+z h(z) \\
& =\left(z h^{\prime}(z)\right)^{\prime}+\frac{1}{2}\left(z^{2} h(z)\right)^{\prime}
\end{aligned}
$$

Integrating above equation over z from 0 to z on both sides,

$$
\begin{aligned}
z h^{\prime}(z)+\frac{1}{2} z^{2} h(z) & =C_{1} \\
\Rightarrow \quad h^{\prime}(z)+\frac{1}{2} z h(z) & =C_{1} \frac{1}{z}
\end{aligned}
$$

Using the integrating factor $M=e^{\frac{1}{4} z^{2}}$, then we have

$$
\frac{d}{d z}\left(e^{\frac{1}{4} z^{2}} h(z)\right)=C_{1} \frac{1}{z} \frac{e^{\frac{1}{4} z^{2}}}{}
$$

Integrating both sides from 0 to z, then we obtain the general solution

$$
h(z)=e^{-\frac{1}{4} z^{2}}\left(C_{1} \int_{0}^{z} \frac{1}{s} e^{\frac{1}{4} s^{2}} d s+C_{2}\right)
$$

where C_{1}, C_{2} are any constants.

